使用环境模型和值函数,代理可以通过向不同长度展开模型来构造状态值的许多估计,并使用其值函数引导。我们的关键识别是,人们可以将这组价值估计视为一类合奏,我们称之为\ eNPH {隐式值合奏}(IVE)。因此,这些估计之间的差异可用作代理人的认知不确定性的代理;我们将此信号术语\ EMPH {Model-Value不一致}或\ EMPH {自给智而不一致。与先前的工作不同,该工作估计通过培训许多模型和/或价值函数的集合来估计不确定性,这种方法只需要在大多数基于模型的加强学习算法中学习的单一模型和价值函数。我们在单板和函数近似设置中提供了从像素的表格和函数近似设置中的经验证据是有用的(i)作为探索的信号,(ii)在分发班次下安全地行动,(iii),用于使用基于价值的规划模型。
translated by 谷歌翻译
模式形成过程中拓扑和微观结构方案中过渡的识别和分类对于理解和制造许多应用领域中的微观结构精确的新型材料至关重要。不幸的是,相关的微观结构过渡可能取决于以微妙而复杂的方式取决于过程参数,而经典相变理论未捕获。尽管有监督的机器学习方法可能对识别过渡制度很有用,但他们需要标签,这些标签需要先验了解订单参数或描述这些过渡的相关结构。由动态系统的通用原理的激励,我们使用一种自我监督的方法来解决使用神经网络从观察到的微观结构中预测过程参数的反问题。这种方法不需要关于不同类别的微观结构模式或预测微观结构过渡的目标任务的预定义的,标记的数据。我们表明,执行逆问题预测任务的困难与发现微观结构制度的目标有关,因为微观结构模式的定性变化与我们自我监督问题的不确定性预测的变化相对应。我们通过在两个不同的模式形成过程中自动发现微观结构方案中的过渡来证明我们的方法的价值:两相混合物的旋律分解以及在薄膜物理蒸气沉积过程中二进制合金浓度调制的形成。这种方法为发现和理解看不见的或难以辨认的过渡制度开辟了一个有希望的途径,并最终用于控制复杂的模式形成过程。
translated by 谷歌翻译
交叉路口交通信号控制器(TSC)中的次优化控制策略有助于拥堵,导致对人类健康和环境的负面影响。交通信号控制的强化学习(RL)是设计更好控制政策的有希望的方法,并近年来吸引了相当大的研究兴趣。但是,在该区域中完成的大多数工作使用了交通方案的简化仿真环境,以培训基于RL的TSC。要在现实世界流量系统中部署RL,必须关闭简化的仿真环境和现实应用程序之间的差距。因此,我们提出了一个基准工具,将RL代理作为TSC的基准工具,在Lemgo的德国中型镇的逼真模拟环境中。除了现实的仿真模型之外,LEMGORL还包括交通信号逻辑单元,可确保符合所有监管和安全要求。 LEMGORL提供与Killknown Openai健身房工具包相同的界面,以便在现有的研究工作中轻松进行部署。为了演示LemGorl的功能和适用性,我们利用分布式和并行RL的框架训练CPU群集的最先进的深rl算法,并将其性能与其他方法进行比较。我们的基准工具推动了RL算法对现实世界的应用。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译